Scaling Up Average Reward Reinforcement Learning by Approximating the Domain Models and the Value Function
نویسندگان
چکیده
Almost all the work in Average-reward Reinforcement Learning (ARL) so far has fo-cused on table-based methods which do not scale to domains with large state spaces. In this paper, we propose two extensions to a model-based ARL method called H-learning to address the scale-up problem. We extend H-learning to learn action models and reward functions in the form of Bayesian networks, and approximate its value function using local linear regression. We test our algorithms on several scheduling tasks for a simulated Automatic Guided Vehicle (AGV) and show that they are eeective in signiicantly reducing the space requirement of H-learning and making it converge faster. To the best of our knowledge, our results are the rst in applying function approximation to ARL.
منابع مشابه
Scalable Inverse Reinforcement Learning via Instructed Feature Construction
Inverse reinforcement learning (IRL) techniques (Ng & Russell, 2000) provide a foundation for detecting abnormal agent behavior and predicting agent intent through estimating its reward function. Unfortunately, IRL algorithms suffer from the large dimensionality of the reward function space. Meanwhile, most applications that can benefit from an IRL-based approach to assessing agent intent, invo...
متن کاملModel-Based Average Reward Reinforcement Learning
Reinforcement Learning (RL) is the study of programs that improve their performance by receiving rewards and punishments from the environment. Most RL methods optimize the discounted total reward received by an agent, while, in many domains, the natural criterion is to optimize the average reward per time step. In this paper, we introduce a model-based Average-reward Reinforcement Learning meth...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملModel-Based Reinforcement Learning
Reinforcement Learning (RL) refers to learning to behave optimally in a stochastic environment by taking actions and receiving rewards [1]. The environment is assumed Markovian in that there is a fixed probability of the next state given the current state and the agent’s action. The agent also receives an immediate reward based on the current state and the action. Models of the next-state distr...
متن کاملHybrid Reward Architecture for Reinforcement Learning
One of the main challenges in reinforcement learning (RL) is generalisation. In typical deep RL methods this is achieved by approximating the optimal value function with a low-dimensional representation using a deep network. While this approach works well in many domains, in domains where the optimal value function cannot easily be reduced to a low-dimensional representation, learning can be ve...
متن کامل